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This present work focuses on the influence of nonlinearities associated with impact on the 

rocking behavior of a rigid body block subjected to a two-dimensional excitation in the 

horizontal and vertical directions. The nonlinearities in rocking system are found to be strongly 

dependent on the impact between the block and the base that abruptly reduces the kinetic energy. 

In this study, the rocking systems of the two types are considered : The first is an undamped 

rocking system model that disregards the energy dissipation during the impact and the second 

is a damped rocking system, which incorporates energy dissipation during the impact. The 

response analysis is carried out by a numerical method using a non-dimensional  rocking 

equation in which the variations in the excitation levels are considered. Chaos responses are 

observed over a wide range of parameter values, and particularly in the case of large vertical 

displacements, the chaotic characteristics are observed in the time histories, Poincare sections, 

the power spectral density and the largest Lyapunov exponents of the rocking responses. 

Complex behavior characteristics of rocking responses are illustrated by the Poincare sections. 

Key Words : RockingVibration,  Rigid Body Block, Energy Dissipation, Poincare Section, The 

Largest Lyapunov Exponents 

1. Introduction 

Many research works associated with the roc- 

king behavior of rigid bodies have been under- 
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taken since the 1960's in order to investigate the 

rocking characteristics of rigid bodies such as 

tombstones and historical monuments and to de- 

termine the criteria for their overturning (Aslam 

et al., 1980; Tso and Wong, 1989). However, 

most of these works relied on the analytical pre- 

dictions using the piecewise-linearized equations 

(Lin and Yim, 1996). In addition, these research 

works adopted extremely simplified rocking mo- 

dels such as pure-rigid models in which the 

damping is due to only abrupt energy loss during 



1250 Man- Yong Jeong, Hyun Lee, Ji-Hoon Kim, Jeong-Ho Kim and In- Young Yang 

impact, the block and base are rigid, and the 

sliding motion cannot occur. In fact, for most real 

rocking bodies such an ideal condition cannot be 

realized. Therefore, the rocking behaviors of the 

rigid bodies should be investigated under realistic 

conditions, which include the nonlinear effects of 

impact and sliding. Most experimental works on 

rocking vibration have reported that rocking may 

not occur even when the excitation is periodic. 

The cause of the non-occurrence is due to the 

sliding motion of the block and the impact be- 

tween the block and the base. The contact condi- 

tion (for example, the frictional force between the 

block and the base) can be delicately changed by 

varying the block position. Moreover, the rocking 

response is influenced by small changes in the 

condition of the contact between the block and 

the base. The unrepeatablity and chaotic behavior 

of the rocking response was examined in the 

previous experimental works (Jeong and Suzuki, 

1995). The observed chaotic phenomena are due 

to the disturbances such as the change in the 

frictional force between the block and the base. 

The Hyogoken-nanbu earthquake of January 

1995 caused block-like objects such as tombs- 

tones, historical monuments, refrigerators, and 

furniture to be damaged by overturning or falling- 

down. In particular, freestanding block objects 

were damaged, which may have been due to 

violent vertical ground motion caused by the 

earthquake. Therefore, the present work focuses 

on the we undertake rocking response analysis 

for the harmonic excitation case. This paper 

illucidates several basic characteristics of the 

rocking motion by performing the rocking re- 

sponse analysis result by using a nonlinear 

rocking model. The nonlinearities of the rocking 

system are related with the transition of the 

governing equations and energy dissipation due 

to the impact between the block and the base. 

There are many studies about rocking of rigid 

bodies but the excitation has been limited to 

one-dimensional horizontal motion. In the case 

of a two-dimensional excitation, the vertical 

force can work as perturbation to the rocking 

system so that the rocking behavior can be more 

complex. Therefore, we first examine the behavior 

characteristics of the rigid block before deter- 

mining the safety condition of the block structure. 

The resulting motion is complex and it is different 

to determine the safety condition against over- 

turning. 

2. Rocking Equations 

2.1 Rocking equations 
Figure 1 shows the rocking system subjected to 

a two-dimensional excitation in the horizontal 

and vertical directions where a~ (t) and ah (t) are 

the vertical and horizontal excitations respective- 

ly, x, y and 0 are the horizontal, vertical and 

angular displacements of the mass center, respec- 

tively, fx is the reactive force in the horizontal 

direction and fy is the reactive force in the vertical 

direction. 

Rocking motion is initiated (at time t) when 

the following condition is satisfied 

B a~ > ~ - ( g  + av) (1) 

where g denotes the gravitational acceleration. 

The horizontal and vertical reaction forces be- 

tween the block and the base in the horizontal 

and vertical directions, fx and fy, respectively, are 

given by 

fx=mah(t) +m# (2) 

fy= mao (t) + rag+ mao (3) 

The governing equation of motion with respect to 

the rotation centers O and O' is given by 

IO=mRah(h)cos(¢-I 0 l) (4) 
- S ( 0 )  (ma,(t) +mg) R s in(¢-I  0 l) 

B 

Y H 

/, 
Fig. 1 Rocking of a rigid body block 
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where S ( 0 )  represents the signum function. The 

equations of the rocking motion can be expressed 
as follows : 

where Io denotes the moment of inertia about the 

block edges and is given by 

4 m R  2 
I ° =  3 (6) 

The rocking frequency of the block is defined by 

m g M _  3g (7) 
~ - -  Io 4 R  

2.2 Impact of block and base 
Assuming that there is sufficient friction to 

prevent sliding during the rocking and the impact 

stages the restitution coefficient is defined by 

3 z e = l - y s i n  ~b (8) 

As in Yim et. al.(1980), it is assumed that the 

angular velocities before and after the impact are 
related by 

~2=-e0, (9) 
in which ~ and 02 are the angular velocities 

before and after the impact, respectively, and e 

denote the restitution coefficient. 

3. Rocking Response Analysis 

The rocking period of the block depends on 

the block size parameter R, as shown in Eq. (7). 

Therefore, the rocking frequency p becomes the 

most significant parameter in the rocking system. 

To simplify the problem, the rocking equation is 
normalized using @ = O~ ~r, p t  = r and Q =  o)/p 

~+/~ T c o s , ~ ( l - I O I )  
(10) 

+ S ( O ) ( l + ~ - ) s i n ~ b ( l -  I ~)[)}----0 

The normalized post- impact  velocities of the 

mass center is expressed in terms of  the pre- im- 
pact velocity as follows: 

~2=--e~I (11) 

The normalized excitation forces in the horizontal 

and vertical directions are given by 

ah(r) =Ah~g sin(~2~r+ g)~) (12) 

av(r) =Av~g sin(~vr+ ~)  (13) 

Using a variable time-step Ralston's Runge- 

Kuna method, the rocking response analysis of 

the rigid block system is carried out to investigate 

the dependence of the response characteristics 

on the excitation as well as the system para- 

meters such as the excitation amplitude, the ex- 

citation frequency and the restitution coefficient. 

The standard normalized sampling time of the 

numerical integration is 0.004. At the time of 

impact, the integration time-step is iteratively 

reduced by a factor of 10 each time until the 

normalized angular displacement became suffi- 

ciently small (10 -6 or less). When the contact 

occurs (rotation angle equals zero), the transition 

of the rocking equation is carried out by adopting 

Eq. (8) as a description of the kinetic energy 

dissipation during the impact. The rocking re- 

sponse characteristics are examined by comparing 

the undamped system with the damped system. 

Here, the undamped system does not include the 

kinetic energy dissipation during impact, i.e., 
e = l .  

The chaotic rocking responses are found not 

only for the undamped rocking system but also 

for the damped rocking system excited by a 

two-dimensional  force. The chaotic behavior is 

characterized by a blend of the random and un- 

predictable component and a certain ordered com- 

ponent, although the excitation is deterministic 

and periodic. The unpredictability arises from the 

rocking motion's extreme sensitivity upon the 

initial conditions, the system parameters and the 

excitation parameters. Nearby trajectories of the 

chaotic motion, which for infinitesimally different 
initial conditions diverge exponentially, lead to 

large differences in the long-term responses. 

Generally, the difference between the quasi-  

periodic and chaotic responses is not always 

obvious from the time histories and the Poincare 

section. In this study, the following five methods 
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of the chaotic analysis are used to examine the 

rocking responses. First, the bifurcation diagrams 

are created by plotting the normalized angular 

displacement sampled at periodic points in the 

rocking response for 50,000 points (after steady 

state has been achived). The bifurcation diagrams 

are constructed with a sampling amplitude in- 

crements of 0.05 for horizontal excitation only, 

and the increment of 0.02 for vertical excita- 

tion with fixed horizontal excitation amplitude. 

Blanks (or gaps) between the amplitude incre- 

ments represent the overturning of the object. The 

bifurcation diagram shows the variation of the 

rocking response characteristic and the response 

shape for variations in the system and excitation 

parameters, and it plots the normalized angular 

displacement against the excitation forcef 0 in 

rocking response data from 150,000 to 200,000. 

Second, time histories of selected individual res- 

ponses are plotted to demonstrate the response 

characteristics. Third, the power spectral densities 

of the rocking responses are constructed by using 

time history of from 3000 to 7096 unit. These 

density function is also useful for examining the 

periodicity of the response. The periodic, quasi- 

periodic, and chaoticl responses have a single 

dominant frequency, a finite number of incom- 

mensurate frequencies, and an infinite number of 

frequencies (i.e., a wideband spectrum), respec- 

tively. Fourth, the poincare sections are con- 

structed by the strobe-points in the phase space 

for the rocking response sampled at periodic 

points of horizontal (or vertical) excitations. The 

diagram appears as a strange attractor in the case 

of the chaotic response, and one or more fixed 

points in the case of the periodic or subharmonic 

response. Fifth, the largest Lyapunov exponent is 

a quantitative measure of the divergence rate of 

nearby trajectories in the phase space. When the 

largest Lyapunov exponent is positive, the re- 

sponse is chaotic, whereas it is zero for periodic 

and quasi-periodic responses. 

4. Undamped Rocking Response 

In order to investigate the basic behavior of the 

rocking system, the undamped rocking system, 

which disregards kinetic energy dissipation dur- 

ing the impact, is initially considered. The un- 

damped rocking system is not realistic but its 

behavior characteristics can still provide an in- 

sight to help understand the nonlinear charac- 

teristics of the damped rocking system. By using 

the stability analysis method, Yim predicted that 

there exists no stable periodic response for all 

combinations of the system and excitation para- 

meters (Yim et al., 1980). The analytical predic- 

tions of the behavior of undamped systems have 

been confirmed by the numerical results. How- 

ever, the confirmation that uses piecewise-lin- 

earized equation is limited to the case of the 

horizontal excitation only. 

4.1 One-dimensional excitation (Horizontal 
only) 

In this section, in order to investigate the de- 

pendence of the rocking responses upon excita- 

tion amplitude, the numerical analysis is carried 

out with all other parameters fixed. The system 

and excitation parameters used are B = I m, H -  

4m, e = l  and .Qh=15.708. As shown in the 

bifurcation diagram of Fig. 2, there are no stable 

periodic rocking responses, only quasi-periodic, 

chaotic and overturning responses coexist. The 

bifurcation diagram also shows that the maximum 

response amplitude increases, and overturning is 

more likely to occur with increasing excitation. 

In fact, for the normalized horizontal excitation 
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amplitude Ah  less than about 3.8, the response 

amplitude is less than 0.1. However, it appears 

that overturning would likely occur for A~ ex- 

ceeding 10. 

The rocking responses shown in Figs. 3 ~ 6  

indicate the typical chaotic responses of the 

undamped rocking system. The time history, the 

power spectral density and the Poincare section 

are shown in (a), (b) and (c) of these figures, 

respectively. As shown in these figures, the chao- 

tic responses have aperiodic time histories and 

their power spectral densities contain an infinite 

number of frequencies. The Poincare sections 

shown in (c) of the above figures clearly demon- 

strate that the responses are chaotic. Note that 

the rocking amplitude is restricted to around 0.1 

in Figs. 3 and 4. Figs. 5 and 6 show the rocking 

responses when the excitation amplitudes are 

slightly different each other, namely, Ah=3.3957 

and 3.3958. Figure 5 is an example that indicates 

the effect of a small variation in the excitation 

amplitude. For  Fig. 6, the response doesnot show 

overturning, even though the excitation amplitude 

Ah is more than that in Fig. 5. It goes along the 

outward trajectory and then comes again into the 

inner trajectory after reaching the outer trajectory 

These two responses show that the undamped 

rocking response can be very sensitive to small 

variations in the excitation parameters. The Poin- 

care sections of all cases have the attractors of 
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symmetric structure as shown in (c) of Figs. 3-- 5 

when the rigid block is subjected to the horizontal 

excitation only. The largest Lyapunov exponents 

for the rocking responses are 1.5, 0.95 and 0.9 

respectively. Thus it is confirmed that they are 

chaotic. 

A typical quasi-periodic response of the un- 

damped rocking system is shown in Fig. 7. In this 

case, the rocking response shows a quasi-periodic 

motion because the Lyapunov exponent is 0. 

Quasi-periodic responses can be considered to be 

to be a transition between the periodic and the 

chaotic responses. They usually appear in con- 

junction with the chaotic response. Thus, their 

appearance is indicative of an imminent chaotic 

response. However, no clear pattern of conditions 

necessary for the quasi-periodic response exists 

although the undamped system. 

The poincare sections of the undamped rocking 

responses show a strange attractor in the phase 

space, which has a limit cycle of odd number 

and the symmetric structure. The number of the 

limit cycle increases or decreases depending on 

the variation of the excitation amplitude. The 

individual rocking motion about each edge con- 

tains exponentially divergent terms and is un- 

bounded. Thus, small perturbations in the initial 

conditions of the rocking motions about given 

edge will diverge as time increases. However, the 

non-linearity of the transition during the impact 

in the undamped rocking system provides the 

"folding" needed for the nonlinear (combined) 

rocking response to become bounded. These two 

elements together provide the ingredients for 

bounded chaotic responses. Since chaotic res- 

ponses are characterized by extreme sensitivity to 

the system parameters nature and the transition 

non-linearity, they constitute a major cause of the 

extreme sensitivity of the rocking response. 

4.2 Two-dimensional  excitation (Horizon- 
tal and vertical) 

The effects of the presence of the vertical ex- 

citation on the rocking response are examined 

her through a system with fixed horizontal exci- 

tation. As shown in Fig. 2, when the rigid block 

is subjected to a one-dimensional excitation, for 

A h= 3 ,  the Poincare points are restricted to a 

narrow region with 19 less than 0.1. In this sec- 

tion, in order to investigate the relationship be- 

tween the rocking response and the excitation 

amplitude in the vertical direction, the numerical 

analysis is carried out with the other parameters 

fixed. The system and the excitation parameters 

are t3=1 m, H = 4 m ,  e=-I ,  ..Qh=-.Qv= 15.708 and 

Ah=2 and the vertical amplitude is varied in 

the increment of 0.02 from 0 to 3. The bifurcation 

diagram of the rocking responses for the above 

conditions is shown in Fig. 8. Similarly, the 

bifurcation diagram for the excitation parameters. 

B = I  m, H = 4 m ,  e = l ,  ,.Qh=,.Qv= 15.708, Ah=3  

and A ~ = 0 - 3 ,  is shown in Fig. 9. As shown by 
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these two bifurcation diagrams, the rocking res- 

ponses become chaotic and the responses for the 

excitation amplitude greater than 1.25 in the ver- 

tical direction show overturning. To investigate 

the change of the attractor shape, examples of 

the undamped rocking responses for two-dimen- 

sional excitation are shown in Figs. 10--11. Fig. 

10 shows the rocking response under the same 

conditions used in Fig. 3, except for larger verti- 

cal excitation. As shown in the Poincare section 

of the response, the attractor is composed of four 

domains of attraction that are interconnected 

with each other are whirl. The rocking response 

for B = l m ,  H = 4 m ,  e = l ,  ,Qh=,(2v=15.708, 

A h= 3 ,  Av=0.35 is shown in Fig. 11. The 

rocking response shown in Fig. 11 also has a 

periodic point group of odd numbers and di- 

verges to the whole of phase space, which 

corresponds to overturning. The Poincare section 

has a large number of attraction domains that 

extend to the whole of phase space, and the power 

spectral density have spectrum has an infinite 

number of frequencies. The Lyapunov exponents 

for these two rocking responses are 1.1 and 0.31, 

respectively. 

In the rocking system under the two-dimen- 

sional excitation, the dependence on the system or 

excitation parameters is greater than that of the 

one-dimensional excitation. The attractor shape 

of the rocking response becomes asymmetrical 

and more complex, and extends to wider phase 

space than is the case of the one-dimensional 

excitation. The rocking responses for the two- 

dimensional excitation case show a large number 

of attraction domains in the the whole of phase 

region except for a comparatively small range of 

the vertical excitation level. Therefore, the possi- 

bility of overturning is higher for the two-dimen- 

sional excitation case than for the one-dimen- 

sional excitation case. 

5. Damped Rocking Response 

In the previous section, the nonlinear rocking 

characteristics of an undamped rocking system 

have been explained. However, in actuality the 

undamped rocking system is improbable, since 
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the impact between the block and the base is 

essentially accompanied by some energy dissipa- 

tion. If the block and the base are flexible and 

the energy dissipation during the impact is non-  

homogeneous, the problem will be guite complex. 

In this study, a restitution coefficient e=0.912 is 

used for energy dissipation during the impact, 

which is determined by the geometrical condition 

of the block, under the assumption that both the 

block and the base are rigid bodies. 

5.1 One  d imens iona l  exc i ta t ion  

The bifurcation diagram of the damped rocking 

response for B =- 1 m, H - - 4  m, ~ h =  15.708, A h =  

1--I0, e----0.912 is shown in Fig. 12. Most of the 

responses are periodic responses of the (1, 1) or 

(1, 3) mode as shown in Fig. 12, but have much 

more than one or three Poincare points for several 

excitation amplitudes. All of the responses show 

the periodic motion induced as a result of energy 

dissipation ; there is no chaotic or quasi-periodic 

response. However, the mode distribution of the 

steady-state rocking response is non-homogen- 

eous for the excitation amplitude changes and the 

safety condition of the block is not easy to deter- 

mine. 

5.2 T w o - d i m e n s i o n a l  exc i ta t ion  

The bifurcation diagram of the rocking res- 

ponses for B = I  m, H = 4 m ,  e---0.912, f2h=~v = 

15.708, Ah----3, A~=0.35 is shown in Fig. 13, and 

the bifurcation diagram for B = I  m, H = 4  m, 

e=0.912, 3"2h=,Qv=15.708, A h = 4 ,  Av=0.35 is 

shown in Fig. 14. The bifurcation shown in 

Fig. 13 apparently indicates a period-doubling 

bifurcation for the vertical excitation amplitude 

less than 2.15, but shows an intermittency transi- 

tion into a chaotic response for the excitation 

amplitude from 2.15 to 2.6. The responses show 

chaotic motions for some vertical excitation 

amplitudes, but they coexist with the periodic 

responses. In the case of Fig. 14, the attraction 

domain of the Poincare section for the vertical 

excitation amplitude of over 2.7 diverges to a 

wider region, and the response becomes chaotic. 

The periodic, chaotic and overturning responses 
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coexist for the vertical excitation amplitude of 

over 2.7. Typical examples of periodic rocking 

responses are shown in Figs. 15~ 17 where (a), 

(b) and (c) denote the time history, the power 

spectral density and the Poincare section, respec- 

tively, for the rocking response. Here, the power 

spectral density of the rocking response is ob- 

tained from the time history after the normalized 

time of 25 has elapsed. 

The rocking response shown in Fig. 16 passes 

through a long transient motion and reaches 

the periodic steady state rocking response in the 

(1, 2) mode. In this case, the Poincare section 

has two fixed points at first sight but it consists 

of two neighboring fixed points. This type of the 

00~ IS1.II.,.,.I .... .'.'.::..'..L.I.L....L...]L.*.'.L.'.'..L.'.III.J 
° ° 
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Fig. 15 Damped rocking response (z"2h=..Qv = 
15.708, Ah=3.0, Av=l.7,  e=0.912 

response can be considered to be a rocking mode 

in the transition or critical region between the 

(1, 2) and (1, 4) modes. The chaotic attractor 

shown in (c) of Fig. 16 consists of three fixed 

points, namely, the rocking response may be 

considered to be a periodic motion in the (1, 3) 

mode. The Poincare section of Fig. 16 shows the 

start of double period bifurcation from the two 

neighboring fixed points. Therefore, the response 

has become the periodic rocking response in the 

(I, 6) mode through a small increase in the 

excitation amplitude. Fig. 17 shows an example of 

the rocking response consisting of two separate 

fixed points. The Lyapunov exponents for these 

responses are 0. As shown in Figs. 13~14, the 

rocking response in the modes (m, n) of odd 

periodicity becomes the modes (m, 2 m) of even 

periodicity through a period doubling bifurca- 

tion. 

Examples of the chaotic responses are shown 

in Figs. 18~ 19. The Poincare sections for these 

chaotic responses show the strange attractors of 

the asymmetric shape, which consist of the even 

number of attraction domains and are whirled in 

the anti-clockwise direction. Note that the attrac- 

tors shown in the Poincare sections for the 

undamped rocking responses of Figs. 10 and 11 

are symmetric. This point is illustrated by com- 

paring the above examples with one-dimensional 

rocking responses that cause of whirl structure is 

in the addition of vertical excitation as the same 
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way with the case of the undamped rocking sys- 

tem. The whirling degree of chaotic attractor is 

influenced by the ratio of the excitation ampli- 

tudes of the horizontal and vertical directions. 

The chaotic attractor shown in Fig. 18 has six 

domains of attraction and the attractor shown in 

Fig. 19 has more. The Lyapunov exponents of 

these chaotic responses are 1.52 and 0.98, respec- 

tively. The damped rocking response due to a 

one-dimensional harmonic excitation in the hori- 

zontal direction appears as a periodic motion. 

However, when the rocking system is subjected 

to a two-dimensional harmonic excitation, in 

both the horizontal and vertical directions, the 

responses are significantly influenced by the 

vertical excitation and appears as the rocking 

responses that are either high-order rocking 

mode or chaotic. In particular, the rocking res- 

ponses strongly depend on the excitation para- 

meters and most of them show chaotic motion or 

overturning for the two-dimensional excitation 

c a s c .  

6 .  I n i t i a l  S e n s i t i v i t y  

The sensitivity of the rocking response on the 

initial conditions is investigated by comparing the 

three responses with small differences in the ini- 

tial conditions. The effect of the divergence of 

nearby trajectories on the behavior of nonlinear 
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systems can be illustrated by expressed in an 

elegant metaphor known as the butterfly effect. 

Figs. 20 and 21 show the rocking responses for 

the normalized initial angular displacements of 

O0=0, 0.00004, and 0.0001, respectively. As 

shown in (a) of these figures, the time motion 

histories are nearly identical before they reach the 

normalized time of 3 but become very different 

from each other thereafter, indicating that the 

rocking responses are sensitive to variations in the 

initial condition. However, the Poincare sections 

shown in (c) of Figs. 20 and 21 form the strange 

attractors of the identical shape, which indicate 

that the rocking responses are changed by small 

change in the initial condition, but the attractor 

shape of the chaotic responses is unaffected by the 

initial condition. 

7. Conclusions 

This study examines the chaotic behavior of 

the rocking response of a block shaped structure 

to a two-dimensional harmonic base excitation. 

The effects of the two types of nonlinearity in 

the rocking system, namely, the transition of the 

governing equations and energy dissipation dur- 

ing the impact are examined in detail. The de- 

pendence of the rocking response upon the ex- 

citation parameters is examined by using bifurca- 

tion diagrams. The results of the numerical an- 

alysis led to the follow conclusions: 

(1) The response of the undamped rocking 

system shows chaotic motion in almast the whole 

phase space, except for a small region showing 

quasi-periodic motion. The undamped rocking 

response has the domains of attraction of odd 

number for the case of the one-dimensional ex- 

citation in the horizontal direction, but for the 

cose of two-dimensional excitation in the hori- 

zontal and vertical directions, it has the domains 

of attraction of even number. The domains of 

attraction are connected to each other and can be 

made to increase or decrease by varying of the 

excitation amplitude or frequency. The attractors 

have the characteristic shapes, which whirl in the 

anti-clockwise direction. 

(2) The response of the damped rocking sys- 

tern shows periodic motions of odd periodicity 

such as the (1, 1) mode or the (1, 3) mode for 

the case of one-dimensional excitation. However, 

two types of rocking responses, namely, periodic 

responses of odd periodicity in the (1, 1) or (I, 3) 

mode, periodic responses of even periadicity 

(1, 2), (1, 4) or (1, 6) mode and the chaotic 

responses coexist for the case of the two-dimen- 

sional excitation in the horizontal and vertical 

directions. 

(3) When the damped rocking system is sub- 

jected to a vertical excitation of comparatively 

high amplitude, the rocking response becomes 

chaotic motion and the attractor of the response 

has complex structure, and whirl in the anti- 

clockwise direction. 

(4) The bifurcation diagrams of the undamped 

and damped rocking systems show the intermit- 

tency transition of the rocking response. The 

quasi-periodic response, the chaotic response and 

overturning coexist and there is no periodic re- 

sponse for the undamped rocking system. On the 

contrary, the periodic response, the chaotic re- 

sponse and overturning coexist for the damped 

rocking system when the rigid block is subjected 

to a two-dimensional excitation. 
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